

Power Cords & Disposable Batteries

Total Cost of Ownership

Disposable vs. Rechargeable Battery

\$0.75/kwh

\$260/kwh

\$2 per battery 2,850mah at 1.2V Grid Electricity cost = \$0.17/kwh

WiTricity is Wireless Electricity

Safe

Efficient

Works Over Distance

Technology Benefits

Flexible orientation between the source and capture device(s)

Supports multiple devices with differing coil sizes and power requirements

Powers through surfaces including wood, granite, plastics, glass, and more

Extended wireless range with WiTricity *Resonant Repeaters*

How It Works

Resonance

Stored energy *oscillates* between two modes

Magnetic Resonator

Stored energy oscillates between *magnetic* (B) and *electric* fields (E)

Coupled Resonators

Efficient and selective energy transfer can be achieved between high Q magnetic resonators

Safe and Efficient Energy Transfer Over Distance and Through Materials

Efficient Energy Transfer Over Distance

$$\eta = \frac{U^2}{\left(1 + \sqrt{1 + U^2}\right)^2}$$

Optimum efficiency η is only a function of the figure-of-merit U

$$U = \frac{\kappa}{\sqrt{\Gamma_1 \Gamma_2}} = k\sqrt{Q_1 Q_2}$$

Coupling and Quality factor are important parameters

Resonators with **High Quality** factor enable efficient energy transfer over distance

Application: Consumer Electronics

Wireless Charging of Mobile Devices (through surfaces)

Wireless Rechargeable
Batteries (charge
in the device)

Wireless Charging of Laptops & Peripherals (multiple devices)

Application: Automotive

Wireless Charging of EVs and HEVs

Application: Medical

Implantable Devices: LVADs & CRMs, Opthmalic & Cochlear Surgical & Handheld Devices, Mobile Equipment Carts

Application: Defense

Wireless Charging for Soldier Electronics to Extend Battery Life

Wireless Charging of UUVs

Wireless Charging of Military Mobile Robots in the Battlefield

Market Landscape

High Efficiency

Positional Dependence

Positional Freedom

Low Efficiency

Standards Landscape

Highly Resonant Alliance for Wireless Power **High Power** Low Power __ **WIRELESS POWER** Inductive

Working with Wireless Electricity

- Take advantage of existing reference designs
- Reduce your time-to-market through technology transfer
- Accelerate development with Software tools that simulate the application environment
- Leverage custom development services & support

WiTricity – The foundational technology for highly resonant wireless power transfer

"Any Sufficiently Advanced Technology is Indistinguishable from Magic"

Arthur C. Clarke, 1961
The Third Law