An Overview of EMC Chambers

Donald J Gray
Director of Business Development
# Review of EMC Testing

<table>
<thead>
<tr>
<th>Electromagnetic Compatibility (EMC) Testing</th>
<th>Radiated</th>
<th>Conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test: How much energy is emitted by the EUT?</td>
<td>Emission</td>
<td>Emission</td>
</tr>
<tr>
<td>Test: Can your device withstand external energy?</td>
<td>Immunity</td>
<td>Immunity</td>
</tr>
</tbody>
</table>

[Diagram showing the concept of radiated and conducted emissions]
Shield Rooms

- Conducted EMI
- Conducted EMS
- Includes Transients (e.g., ESD, Surge, Burst)
- Control Rooms & Amplifier Rooms
Radiated Testing

<table>
<thead>
<tr>
<th>Electromagnetic Compatibility (EMC) Testing</th>
<th>Radiated</th>
<th>Conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test: How much energy is emitted by the EUT?</td>
<td>Emission</td>
<td>Emission</td>
</tr>
<tr>
<td>Test: Can your device withstand external energy?</td>
<td>Immunity</td>
<td>Immunity</td>
</tr>
</tbody>
</table>
Why Do We Use A Chamber?

• Early Testing Done Outdoors
  – Open-Air Test Sites (OATS) – EMC
  – Outdoor Far-field Ranges – Antenna Measurements

• But Issues Exist Outdoors
• Noisy Environment
  – Ambient Signals
  – Reflections from Nearby Structures

• Creating Unauthorized Signals!
• Protection from Weather
• Security
EMC Anechoic Chamber Types

- 3m CAC
- 3m Chamber
- 5m Chamber
- 10 m Chamber
- MIL-STD-461
- CISPR 25
- ISO 11452-2
- ETSI
- CISPR 12

All Refer to Commercial Testing – CISPR 16, FCC, Etc

- Compliance vs Precompliance
- Partially lined
- Semi-anechoic (conductive floor)
- Fully-anechoic
- Turntables & Towers

Most common chambers are the compact and full-compliance 3m chambers
OATS vs. Chamber

Liberty Labs, Kimballton, Iowa
EMI Testing - Data Collection

- Full Cylinder of Data
  - Antenna Height: 1-4 m
  - $360^\circ$
- Antenna Tower
- Turntable
Semi-Anechoic Chamber

- Absorber on Five Sides
- Shielded
- Minimize Reflections
- Ground Plane
- Reflection Like OATS
- Correlation
Performance of a Chamber

- Decreases the Reflections – Unwanted Signals
- Allows Measurement of Wanted Signal
- Creates a Quiet Zone for Optimum Testing
- This Creates Better “Performance”
What is a Quiet Zone?

- A Volume of Space (typically a cylinder) in which the least amount of disturbance from “unwanted” signals is incurred.

**Inter-relationship between:**
- Size of QZ
- Size of Chamber
- Size of Absorber
Carbon-Loaded, Polyurethane Material

Pyramidal/Wedge-Shaped Absorber

• Carbon Loaded
• Tapered Shape Creates Tapered Resistances
• Creates Transition of Many Tiny Reflections as EM Wave Passes through Absorber
• These Tend to Cancel Each Other Out
• Common Rule of Thumb (EMC): Length Should be Half-Wavelength of Lowest Frequency
Ferrite Tiles

100 x 100 mm
~ 5.2 – 6.7 mm thick

Typical graph of Reflection Loss (dB)
How Does Absorber Work?

**Hybrid Absorber**
- Combines the Magnetic & Resistive Losses
- Must Create Effective Impedance Match
- If Not, Greater Reflections Created

![Diagram of EM wave and hybrid absorber](image)
Compact 3 m Chambers (CAC)

• EMC-MC Mini Compact Chamber
  – 6m x 3m x 2.4m
  – QZ = 0.5 m to 1.0 m (??)
  – Performance Below 300 MHz Not Good
    (± 6.0 dB below; ± 4.0 dB above)
  – Cannot Fit Antenna Tower!

• EMC-3C Compact Chamber
  – 7m x 3m x 3m
  – QZ = up to 1.5 m
  – Performance Below 300 MHz is Not Good (± 6.0 dB below; ± 4.0 dB above)
  – Use a Reduced Height Ant Tower (2.4 m)

• Still Maintain 3m Test Distance (EMI & EMS)
Full Compliance 3 m Chamber

- Dimensions: 8.9 m x 5.6 m x 5.8 m
- QZ = Up to 2.0
- Excellent Performance – Entire Frequency Range

![Image of a three-meter EMC test chamber with text about hybrid absorber technology, high performance, and flexible modular construction system.]
Dimensions for 3m SAC

- Test Distance to Antenna: 3m
- Test Volume Size: 1.5m
- Antenna Footprint: 1.5m
- Absorber Size (each wall): 1m (0.5m x 2)
- Clearance to Absorber: 2m (1m x 2)
- Total Length: 9m

- This is 3x the required test distance!
5 m Chamber

- Actually… Oversized 3 m chambers!!!
- Dimensions: 11.5 m x 7.5 m x 5.8 m
- QZ = 2 to 4 m (can handle larger EUTs!!)
  - NSA Compliance tested to 3 m ONLY!!!
  - SVSWR Compliance tested to 3 m ONLY!!!!
- Excellent Performance – Entire Frequency Range
- Longer & Much Wider (can fit “dual masts”)
- Larger Personnel Door (3.0 m x 3.0 m vs 0.9 m x 2.1 m)

- Chamber validated at a 3m distance
- Can do EMI testing at 5 m -> More easily correlated to the 10 m distance
10 m Chamber

- Dimensions: 21 m x 12 m x 8.5 m
- QZ > 4 m (can handle larger EUTs!!)
  - NSA Compliance tested to 10 m
  - SVSWR Compliance tested to 3 m ONLY!!!!
- Excellent Performance – Entire Frequency Range
- Twice as Long as 5 m and wider/higher
- Larger Personnel Door (3.0 m x 3.0 m vs 0.9 m x 2.1 m)
- Very Large EUTs; Full Automotive Testing
- Generally Considered the “Gold Standard”
Radiated Emissions Testing > 1 GHz

- SVSWR Method of Verification
- Absorber ≤ 30 cm (assuming EUT/TT flush with the Floor)
IEC 61000-4-3 Radiated Immunity Testing

• Compliant 3m Radiated Immunity
• Add Ferrite Tiles Plus Absorber
• Achieve Field Uniformity
MIL-STD-461/RTCA DO 160

**RTCA DO 160**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Minimum Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 250 MHz</td>
<td>6 dB</td>
</tr>
<tr>
<td>Above 250 MHz</td>
<td>10 dB</td>
</tr>
</tbody>
</table>

**MIL-STD-461**

Reference MIL-STD-461F, 10 December 2007

**Reference MIL-STD-461F, 10 December 2007**

---

(1) Reference RTCA DO 160F, December 6, 2007
(2) Reference MIL-STD-461F, 10 December 2007
MIL-STD-461/RTCA DO 160

**RTCA DO 160**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Minimum Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 250 MHz</td>
<td>6 dB</td>
</tr>
<tr>
<td>Above 250 MHz</td>
<td>10 dB</td>
</tr>
</tbody>
</table>

Reference RTCA DO 160F, December 6, 2007

**MIL-STD-461**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Minimum absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 MHz - 250 MHz</td>
<td>6 dB</td>
</tr>
<tr>
<td>above 250 MHz</td>
<td>10 dB</td>
</tr>
</tbody>
</table>

Reference MIL-STD-461F, 10 December 2007

- Can Easily Uses Truncated 24” Absorber
- Or.. Can Use Shorter Hybrid Material
- Both Meet: DO 160 and MIL-STD specs
- Chamber Size Usually Small – but depends on EUT size

(1) Reference RTCA DO 160F, December 6, 2007
(2) Reference MIL-STD-461F, 10 December 2007
MIL-STD Requirements

Example Chamber Config for MIL-STD-461
4.3.1 Reflection characteristics

Performance of the absorption material shall be greater than or equal to 6 dB in the 70 MHz to 2 500 MHz frequency range. (1)

- Requirement is for absorber coverage on walls/ceiling
- Performance is based purely on absorber reflectivity
- Can be smaller chambers
- Difficult at lower frequencies or for Immunity testing

Reference CISPR 25:2008
Chamber Performance

4.3.1 Reflection characteristics

Performance of the absorption material shall be greater than or equal to 6 dB in the 70 MHz to 2500 MHz frequency range. (1)

- Don’t need hybrid if absorber is about 1 m long
- Typical hybrid absorber with 30 cm absorber will work

---

<table>
<thead>
<tr>
<th>Specifications</th>
<th>AEPH-12 TRN</th>
<th>AEPH-18 TRN</th>
<th>AEPH-30 TRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height cm</td>
<td>33.02</td>
<td>48.26</td>
<td>78.74</td>
</tr>
<tr>
<td>Absorption @ Normal Incidence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 30 MHz dB</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>@ 125 MHz dB</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>@ 250 MHz dB</td>
<td>20</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>@ 500 MHz dB</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>@ 1 GHz dB</td>
<td>16</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>@ 3 GHz dB</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>@ 10 GHz dB</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>@ 18 GHz dB</td>
<td>&gt; 35</td>
<td>&gt; 40</td>
<td>&gt; 45</td>
</tr>
<tr>
<td>Power kW/m²</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Weight kg</td>
<td>3.1</td>
<td>3.7</td>
<td>4.6</td>
</tr>
<tr>
<td>Fire retardancy</td>
<td>NRL 8093 Test, 1, 2 and 3, ISO 11925-2, DIN 4102 Class B2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Reference CISPR25:2008
4.3.2  Size

For radiated emissions tests, the shielded enclosure shall be of sufficient size to ensure that neither the vehicle/EUT nor the test antenna shall be closer than 1 m from the walls or ceiling, or to the nearest surface of the absorber material used thereon. (1)

For radiated emissions tests, the shielded enclosure shall be of sufficient size to ensure that neither the EUT nor the test antenna shall be closer than 1 m from the walls or ceiling, or to the nearest surface of the absorber material used thereon. No part of any antenna radiating element shall be closer than 250 mm to the floor. (1)
ISO 11452-2

• Very Similar to CISPR25 Chamber
• Full Absorber on Walls/Ceiling
• Often Combined w/ CISPR25
• Bigger Antennas to Handle Higher Power – Affects Chamber Size
• Dimensions – Depend on:
  – Absorber Size
  – EUT & Test Bench Size
  – Antenna Dimensions

(1) Reference ISO 11452-2:2004
Chamber Performance

5 Test location

The tests shall be performed in an absorber-lined shielded enclosure.

The purpose of such an enclosure is to create an isolated electromagnetic compatibility test facility which simulates open field testing. Basically, an absorber-lined shielded enclosure consists of a shielded room with absorbing material on its internal reflective surfaces, optionally excluding the floor. The design objective is to attenuate the reflected energy in the test area by at least 10 dB compared to the direct energy. (1)

- Don’t need hybrid if absorber is about 1 m long
- Typical 30 cm, hybrid material will work

<table>
<thead>
<tr>
<th>Specifications</th>
<th>AEPH-12 TRN</th>
<th>AEPH-18 TRN</th>
<th>AEPH-30 TRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>33.02</td>
<td>48.26</td>
<td>78.74</td>
</tr>
<tr>
<td>@ 30 MHz</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>@ 125 MHz</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>@ 250 MHz</td>
<td>20</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>@ 500 MHz</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>@ 1 GHz</td>
<td>16</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>@ 3 GHz</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>@ 10 GHz</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>@ 18 GHz</td>
<td>&gt;35</td>
<td>&gt;40</td>
<td>&gt;45</td>
</tr>
<tr>
<td>Power (kW/m²)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>3.1</td>
<td>3.7</td>
<td>4.6</td>
</tr>
<tr>
<td>Fire retardancy</td>
<td>NRL 8093 Test, 1, 2 and 3, ISO 11925-2, DIN 4102 Class B2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Reference ISO 11452-2:2004
7.6 Location of field generating device (antenna)

The height of the phase centre of the antenna shall be \((100 \pm 10)\) mm above the ground plane.

No part of any antenna radiating element shall be closer than 250 mm to the floor. The radiating elements of the antenna shall not be closer than 500 mm to any absorber material, and shall not be closer than 1 500 mm to the walls or ceiling of the shielded enclosure.

The distance between the wiring harness and the antenna shall be \((1000 \pm 10)\) mm. This distance is measured from:

— the phase centre (mid-point) of the biconical antenna, or
— the nearest part of the log-periodic antenna, or
— the nearest part of the horn antenna.

Reference ISO 11452-2:2004
Fully Anechoic Rooms (FARs)

- Alternative to SAC
- CISPR16 (FSNSA)
- ETSI Standards
- Performance Specs:
  Similar to CISPR25
  (Specs Reflectivity of Absorber)

**ETSI (FAR) Absorber Performance Requirements**
- 10dB  30-100MHz
- 20dB  100-300MHz
- 30dB  300MHz-10GHz
Full Vehicle Testing

- Testing at 10 m Distances
- Chamber Sizes are Customized
- Need to Accommodate Full Vehicles
  - Dynomometers
  - Specialized Facilities
  - Specialized, Extremely Large Antennas
  - Much Higher Power
Turntable & Dynomometer Considerations

- Budget
- Flexibility
- Features

• Extremely Large TT, No Dyno
• Portable Dyno, on top of TT
• Portable Dyno, no TT
• Built-in Dyno, no TT
• TT with integrated Dyno
Specialized Facility Considerations

- Large Doors & TT’s
- Fire Suppression
- HVAC
- Hoists
- Increased Costs
Large Chambers & Customized Shapes

- Customized “Domed” Shapes
- Large Dual-Purpose Chambers
- Tapered Chambers
- Customized Absorber Topologies:
  - Varying shapes
  - Varying Heights and directions
  - “Baffled” Absorbers
- Extremely Large Rectangular Chambers
Thanks for attending!

Mark your calendars for EMC LIVE 2016
April 26-28, 2016