

Streamline EMC Testing with Prescan Analysis Tools

Mark Terrien EMC Business Manager Keysight Technologies

Efficient EMC Testing Improves Revenue

Benefits both Compliance Test Houses and Manufacturers

Compliance testing

- Chamber time is limited resource
- Reducing test time improves efficiency and profitability

Precompliance testing

 Rapid diagnosis of early designs speeds time-to market, facilitating product sales

Factors Affecting EMC Test Times

Many factors affect both Compliance and Precompliance Test times:

- Device Under Test (DUT) setup time
- Receiver/ Spectrum Analyzer Scan times
- Turntable and Antenna movement times
- Suspect frequency analysis
- Final Measurement
- Report Generation

Presentation Will Discuss Tools Used to Speed up Suspect Frequency Analysis Mkr1 498.28 -45.522 dBn 10 dB/div Log Ref -20.00 dBm 🛷

IF Spectrum Monitoring

Center 500.00 MHz

Agenda

- Suspect List Analysis
 - What are suspect emissions and why do we have to analyze them?
- Emissions Prescan Measurements
 - Benefits why we make them
 - Challenges errors associated with prescan
- Solutions to Speed Up Suspect List Analysis

EMCLIV

- Spectrum Analysis
- IF Spectrum Monitoring

But First....What are Suspect Frequencies?

 Frequencies measured during fast prescan that may fail final measurements

to CISPR limits

Prescan Display

Suspect List

EMC LIVE

Why do I Need to Analyze Suspect Frequencies?

- CISPR requirements
 - Must maximize the signal and record azimuth and antenna orientation

- Must ensure that you are measuring at the frequency of maximum emission
- Must monitor emission Quasi-Peak (QP) amplitude to capture maximum value
 - If not constant, users must monitor QP value for 15 seconds or more (as per CISPR 16-2-3, section 6.5).
- Amplitude and frequency errors associated with prescan methods.

Agenda

Suspect List Analysis

- What are suspect emissions and why do we have to analyze them?
- Emissions Prescan Measurements
 - Benefits why we make them
 - Challenges errors associated with prescan
- Solutions to Speed Up Suspect List Analysis
 - Spectrum Analysis
 - IF Spectrum Monitoring

Prescanning Reduces Overall EMC Test Time

- What is Prescanning?
 - Methodology used to reduce overall EMC test time
 - Scan target frequency range with Peak detector to identify frequencies where emissions exist
 - Peak detector significantly faster than weighted detectors
- Recommended by CISPR
 - Specifically to reduce test time

Recommended CISPR Test Flow

EMCLIV

Prescan Saves Time for Both Compliance and Precompliance Testing

How Does Prescan Save Test Time?

 Focus final measurement efforts only on frequencies with emissions above or near the limit line

How Does Prescan Save Test Time?

- Identify suspect frequencies more quickly by scanning with a <u>peak detector</u>.
 - Scanning with CISPR weighted detectors (Quasi-Peak, EMI Avg and RMS-Avg) slow due to defined charge and discharge times

Specified minimum scan times, as stated in CISPR 16-2-3

Frequency band		Scan time T ₈ for peak detection	Scan time <i>T</i> ₈ for quasi-peak detection	
Α	9 kHz to 150 kHz	14,1 s	2 820 s = 47 min	
в	0,15 MHz to 30 MHz	2,985 s	5 970 s = 99,5 min = 1 h 39 min	
C and D	30 MHz to 1 000 MHz	0,97 s	19 400 s = 323,3 min = 5 h 23 min	

Why is Scanning with Peak Detector Allowed?

- Peak values will always be equal to or larger than the Quasi-Peak (QP), EMI-Average or RMS-Avg detected values
- If a peak value is over the limit (or margin), further measurement should be done with CISPR detector

Challenges with Prescan

- Amplitude and Frequency Errors due to:
 - Amplitude or frequency modulation on detected signals
 - Receiver / Spectrum Analyzer sweeping/stepping

Signal Modulation Affects Measured Prescan Level

Prescan Errors due to Modulation on Emission

Challenges with Prescan

- Amplitude and Frequency Errors due to:
 - Amplitude or frequency modulation of detected signals
 - Receiver / Spectrum Analyzer sweeping/stepping

How Modern Receivers Display Amplitude Levels per Frequency Step...

Receiver Display

= (Span/ step size)+1

EMCLIVE

Receivers display amplitudes and frequencies in <u>display</u> <u>"buckets"</u> Number of measurement points

Prescan Amplitude and Frequency Errors When Using a <u>Stepping</u> Receiver

Prescan Amplitude and Frequency Errors When Using a <u>Stepping</u> Receiver (cont.)

Receiver Display

Prescan Amplitude and Frequency Errors When Using a <u>Swept</u> Receiver

Prescan Amplitude and Frequency Errors When Using a <u>Swept</u> Receiver

EMCLIVE

Example: Amplitude and Frequency Errors using 120kHz CISPR RBW

EMCLIVE

Stepped and Swept # Meas. Max Step Size Frequency per RBW Error 120 kHz 1 60kHz 2 60 kHz 30 kHz 3 40 kHz 20 kHz 4 30 kHz 15 kHz

Tradeoff Between Error Magnitude and Test Time

Decreasing Step Size:

- improves accuracy
- adds data points
- increases scan time

(# of points x dwell time)

EMCLI

		Stepped and Swept	Stepped	Swept	30MHz – 1 GHz
# Meas. per <u>RBW</u>	Step <u>Size</u>	Max Frequency <u>Error</u>	Max Amplitude <u>Error</u>	Max Amplitude <u>Error</u>	Scan_Time using <u>10ms dwell</u>
1	120 kHz	60kHz	6 dB	0 dB	80 sec
2	60 kHz	30 kHz	1.2 dB	0 dB	160 sec
3	40 kHz	20 kHz	0.5 dB	0 dB	242 sec
4	30 kHz	15 kHz	0.3 dB	0 dB	320 sec

Agenda

- Suspect List Analysis
 - What are suspect emissions and why do we have to analyze them?
- Emissions Prescan Measurements
 - Benefits why we make them
 - Challenges errors associated with prescan
- Solutions to Speed Up Suspect List Analysis
 - Spectrum Analysis
 - IF Spectrum Monitoring

Swept Spectrum Analysis versus IF Spectrum Monitoring

Swept Spectrum Analysis:

 Local Oscillator (LO) swept to generate spectral display

IF Spectrum Monitoring:

- LO fixed at display center frequency
- spectrum generated using FFT

Spectrum Analysis Offers **Excellent Flexibility**

Benefits

- Multiple Traces •
- Broad range of resolution • bandwidths, including CISPR **RBWs**
- Wide Spans available
- Wide range of detectors
- Markers
- Analog Demodulation

Concerns:

- Sweeping Weighted detectors is slow
 - More difficult to identify max amplitude and frequency of weighted detector response (needed for limit testing)

EMC LIVE

IF Spectrum Monitors Offer Both Active Span and Weighted Detector Display

Benefits:

Markers

Multiple Traces

Active span and weighted detector

amplitudes simplifies maximization

Modern EMI Measurement Tools Contain Both

Prescan analysis tools widely available

- Compliance Receivers
 - spectrum analysis built-in
 - IF analysis tool available standard or as option
- Precompliance Spectrum Analyzers
 - IF analysis tool available as option

Prescan Analysis Tools Improve EMC Lab Efficiency

Prescan Analysis Tools:

- Facilitate suspect list analysis
- Enhance measurement accuracy
 - Identify frequency of maximum emission
- Improve testing quality
- Reduce overall test time

Thanks for attending!

Don't miss our Test Bootcamp!

November 16, 2016 www.emclive2016.com