

RF Enclosure Design for Electrical Engineers

Jamie Howton Chief Technical Officer <u>http://www.fotofab.com</u> <u>https://www.linkedin.com/company/fotofab</u> <u>https://www.facebook.com/fotofabllc</u>

Email: jhowton@fotofab.com Business cellphone: 630-715-3801 Tel: 773.463.6211

https://www.linkedin.com/in/jamiehowton

What is an RF Shield?

- Faraday Cage Invented by Michael Faraday in 1836 "Ice Pail" experiment.
 - Based upon earlier work by Benjamin Franklin in 1755.
 - Usually a metal box or mesh.
- External electric field causes a distribution of the electric field within the conducting material of the cage such that they cancel the field's effect inside the cage.
- Also works in reverse, preventing electric fields from leaking out of the shield
- Electrically conductive material shields better than less conductive material
- Holes in the shield must be smaller than the wavelengths to be shielded against
- Board Level Shield must be electrically grounded
 - Not true if the external enclosure of a product is the shield.

External Reference: https://en.wikipedia.org/wiki/Faraday_cage

Board level shielding material selection guide

Relative Shielding Effectiveness

 \rightarrow

Online Resource:

Board level shield Material Selection Guide http://www.fotofab.com/dg shielding.php

Board Level Shield Types

- Single piece
 - A shield made from a single piece of metal
 - Sides "fold down" from top
 - Can have almost any number of sides
 - Etched, stamped or drawn
 - Soldered to board, not easily removable
- Two or more pieces
 - Base(fence)/cover(lid)
 - Internal dividers soldered, spot-weld or interlocking tabs
 - Fence soldered to board, cover is removable

Bend construction methods

Full thickness bends

- More closely replicates stamping
 - Stiffness, tolerances
- Requires tooling
- Lead time impact
- Cost impact in prototype quantities
- Inside radius > 2 x thickness
- Stamping Much lower part cost with tooling investment

"1/2-etched" bends

- Zero inside radius
- No bend tooling
- Very short lead time
- Bending labor only when needed
- Shipped and stored flat
- Complex geometries inexpensive

EMCLIV

• Not as rigid, thinner bend area

Full-Thickness Bends

Pro-tip: Find an M.E. with Solidworks or Pro/Engineer Buy them a case of beer... $Min\ Inside\ Bend\ Radius > 2t$

 $R = Inside \ radius + .44t$

 $Circumference = 2 * \pi * R$

 $Bend Allowance = \frac{Circumference * Bend Angle}{360}$

- Online resources:
 - Wikipedia: https://en.wikipedia.org/wiki/Bending_(metalworking)
 - Engineers Edge Sheet Metal Calculations: <u>http://www.engineersedge.com/sheet_metal_calc.htm</u>
 - Bend Allowance Calculator: <u>http://www.custompartnet.com/calculator/bend-allowance</u>

"1/2-Etched" bends

Single Piece – stamped/drawn can

- Thinning of walls and top
- Flat within: .005" with bottom flange
 - +/-.005" without flange

Single Piece Shields -Corners

- Pick a corner design Vacant, inside or > Add bend Reliefs
 - fold-over flap.

- > Clearances .003"/005"
- Remember Metal has thickness!!!
- Leads? Where? Add reliefs?

Vacant

Inside

- Fold-over
- Poor heat transfer during solder without holes
- Cleaning not possible after solder
- Repair/rework requires de-soldering shield

Single piece Shields - Blanks

Vacant Corners

Inside Corners

Fold-over Corners

Bend reliefs and total developed length

Metal has thickness
Features add cost
Bends add length

Better heat transfer during solder

Better cleaning after solder

Repair/rework is possible

 \succ

 \geq

LESS THAN METRI THERNESS "T" TAB PETRAL

EMCLIVE

Two-Piece Shield - Base(Fence) & Cover(Lid)

Two-Piece Shield – fold-down base and cover

Board Mounting Solutions

Via hole leads

Solock PASTE

Spring leads SPRING LEAD (FREE STIME) V SHELD RELIEFS - PLATED VIA CIRCOIT BOARD

"Mouse" and other holes

Mouse holes:

- > Openings for circuit traces through shield
- Better heat exchange during re-flow
- Better cleaning after re-flow

Electroplating

- Electroplating enhances:
 - Solderability
 - Nickel Silver no EP required with Active Flux
 - Copper and Brass enhanced
 - Steel, MuMetal EP Required
 - Corrosion resistance
 - The corrosion resistance of most good shielding materials is poor.

- Appearance
 - In all cases.

Common electroplated finishes for shielding:

- Tin (ASTM B545, MIL-T-10727)
 - Lead free or Tin/Lead
 - Bright or dull finish
 - Reflow
- Nickel Sulfamate (AMS-QQ-N-290, ASTM B689, QQ-N-290, MIL-P-81728)
 - Dull finish
 - Excelent for solderability and ductility
 - Base plate for Tin
- Electroless Nickel (AMS-2404, ASTM B733, MIL-C-26074)
 - Delicate finish, absorbs oil

Watch out for:

• Nickel Sulfate – "Brite Nickel" (AMS-QQ-N-290, ASTM B689, QQ-N-290, MIL-P-81728)

- Bright and shiny but not very solderable and very brittle.
- RoHS? Specify a compliant finish.

Online resources:

- RF Shield Design Guide
 <u>http://www.fotofab.com/dg_shielding.php</u>
- Wikipedia RF Shielding: <u>https://en.wikipedia.org/wiki/Electromagnetic_shielding</u>
- In Compliance Magazine "The Basic Principles of Shielding" <u>http://incompliancemag.com/article/the-basic-principles-of-shielding/</u>
- Wikipedia Metal Bending: <u>https://en.wikipedia.org/wiki/Bending_(metalworking)</u>
- Engineers Edge Sheet Metal Calculations: <u>http://www.engineersedge.com/sheet_metal_calc.htm</u>
- Bend Allowance Calculator: <u>http://www.custompartnet.com/calculator/bend-allowance</u>
- Ask Fotofab Engineering a question: <u>engineering@fotofab.com</u>
- Ask Jamie Howton a question: <u>jhowton@fotofab.com</u>

Question Time

Me first, what's wrong with this drawing?

Thanks for attending!

Don't miss our Test Bootcamp!

November 16, 2016 www.emclive2016.com

