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Abstract—We study how the power dissipated into a lossy
medium excited by a nearby antenna is affected by drifts in the
electrical parameters of the lossy medium. The statistical distri-
bution of the sensitivity of the dissipated power is determined by
means of a spectral analysis of the transmission of electromagnetic
energy from air into the lossy half-space. A clear link is drawn be-
tween the reactive content of the field excited by the source and the
dispersiveness of the sensitivity. The case of a stratified structure is
also addressed, by defining a modification factor representing the
alteration of the transmissivity and of its sensitivity when a buffer
layer is introduced. All of the results provided point out that, in
general, the sensitivity of the total amount of power dissipated into
the half-space cannot be predicted independently from a precise
knowledge of the source characteristics, unless under a paraxial
propagation approximation or in a far-field configuration.

Index Terms—Antennas, lossy media, near field, plane-wave
spectrum, sensitivity analysis, specific absorption rate (SAR),
stratified media.

I. INTRODUCTION

I N MANY practical configurations antennas stand near to
a lossy half-space; an example of historical importance is

that of radiating sources placed over a lossy soil [1]. Many
other applications involve a similar scenario: radio-frequency
hyperthermia [2] and specific absorption-rate (SAR) assessment
[3] are but two examples. All of these configurations share a
common concern, that of being able to estimate the amount of
power that will be dissipated into the lossy medium. In the con-
text of the present discussion, we will refer to the concept of
total dissipate power (TDP). Depending on the actual applica-
tion, the TDP needs to be maximized or minimized, but all the
same its value closely depends on the electrical properties of the
concerned medium, namely the electric conductivity and the
relative permittivity . The basic need of a proper estimation
of these parameters thus appears as a potential difficulty in the
computation of the TDP; hence, it is fundamental to investigate
how the TDP can be affected by a variation of the electrical pa-
rameters of the medium, be that due to a drift in time or rather
to an uncertainty in their knowledge.
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Fig. 1. The planar configuration used for the spectral analysis.

The primary aim of this paper is twofold: 1) to provide a
model capable of predicting the sensitivity of the TDP with re-
spect to the lossy half-space characteristics for a given source
and 2) to prove that the TDP sensitivity is statistically dispersed
with respect to the characteristics of the source, hence leading
to a non-negligible uncertainty. In particular, in the context of
SAR assessment, available sensitivity analyses are very limited
in scope, addressing such canonic sources as dipoles [4] and nor-
mally impinging plane waves, which are not always representa-
tive of actual ones. Although the proposed approach is based on
a closed-form analysis, the results presented here do not assume
a far-field configuration for the radiation source, which is a key
point for their practical use.

II. TRANSMISSION THROUGH DIELECTRIC INTERFACES

The scenario here considered is briefly depicted in Fig. 1. A
planar interface separates two half-spaces, one containing
a radiating antenna and the other one a lossy homogeneous di-
electric. The first half-space is assumed to be air, but any other
nonmagnetic medium could be considered, whereas the second
one is characterized by the electric parameters and , which
can be summed up by means of the complex permittivity

.
Rather than working in the space domain, it is convenient to

introduce a plane-wave expansion (PWE), which allows to rep-
resent the electric field distribution over a plane as a superpo-
sition of plane waves or plane-wave spectrum (PWS). Consid-
ering the electric field over a plane, its PWS is
defined as [5]

(1)

where spans the entire field topography over the
plane and is the spectral variable; hereafter,
capital hatted quantities will stand for PWSs. The rationale for
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this approach is that in the spectral domain it is much easier to
represent the propagation of complex field topographies through
stratified media. The PWS over planes at other distances at the
right of can be easily computed introducing the propagator

(2)

with as the longitudinal propagation
constant, and the propagation constant for the considered
medium. The norms used throughout this work are to be
intended as norms applied to complex vectors, unless
explicitly declared otherwise.

The PWE formalism can be defined just over the tangential
components of the vectors involved; for this reason, we will de-
compose the electric field PWS as

(3)

having defined the tangential part of the PWS as
. The overall PWS can be derived by recalling that Gauss

law in a homogeneous medium in absence of local sources reads
as , i.e.,

(4)

where is the propagation vector for a plane wave.
Thus, (3) can be recast as

(5)

Let us now consider the interface : for each plane wave
impinging from the left side, there will be a transmitted plane
wave. Imposing the continuity of the tangential components of
the electric field through the air-dielectric interface, the PWS

of the incident electric field over (i.e., on the air
side) and the PWS of the field over (on the right
side) are related by [5]

(6)

where is the spectral transmission operator for a planar
interface, as recalled in Appendix I. Hereafter, the and -de-
pendency of, respectively, the spatial and spectral functions will
be omitted most of the time for the sake of simplicity.

The TDP is related to the transmitted field by

(7)

where is the volume occupied by the lossy half-space. Thanks
to Parseval theorem (as applied over ), we can state that

(8)

We will now introduce the only two major assumptions used
throughout this work: 1) the spatial bandwidth of the elec-
tric field PWS, satisfies the condition , where

is the dielectric contrast of the lossy medium and 2) the
medium can be described as a lossy dielectric, i.e., .

The first requirement is necessary so that the propagator mod-
ulus be almost flat over the entire bandwidth of the
source PWS, allowing the approximation ; the second
assumption is needed in order to simplify the final results, al-
though closed-form expressions could be given even in a more
general case. Under such conditions, (8) becomes

(9)

where is the free-space wave impedance, and having defined
as in signal analysis the signal energy as the
square of the norm of the field distribution over .

A major issue in this approach is that whenever the dielec-
tric interface is in the near-field region of the source, coupling
mechanisms will likely ensue. For a given distance between
the source and the half-space, the field impinging on the dielec-
tric interface may differ from the one that would be measured
at the same distance in a free-space configuration. These phe-
nomena notwithstanding, the approach here proposed can also
be applied to near-field configurations, without any loss of gen-
erality. Indeed, the coupling between one source and a passive
scatterer can be regarded as given by an infinite series of sepa-
rate interactions. This can be referred to as the multiple-interac-
tion paradigm, and it has been applied, among other scenarios,
in the definition of probe-correction models for near-field mea-
surement techniques [6].

The basic idea is that the time-domain evolution of the cou-
pling is naturally represented through a series of simple inter-
actions, that can be divided into scattering, transmitting and re-
ceiving events. The actual field impinging over the half-
space is thus generally not the one that would be radiated in a
free-space configuration, e.g., in a far-field scenario, but rather
the superposition of all the multiple-interaction contributions,
i.e., the steady-state field including the actual coupling. This
approach is completely general, with the far-field scenario as
a special case.

III. SENSITIVITY ANALYSIS

We proceed by deriving a sensitivity model for the TDP, as
discussed in Section III-A; subsequently, this model will be
used in order to investigate how the TDP sensitivity is linked
to the PWS of the source (and ultimately to the field it radi-
ates), proving in Section III-B that for a given configuration the
sensitivity is, in general, not a deterministic value, but rather a
random variable.

A. Perturbation Model

The sensitivity of the TDP to variations of can be assessed
by applying a perturbation approach to the transmission (6).
While a perturbation of has a direct impact on the TDP, it will
have a higher-order effect on the reflectivity of the medium in-
terface, as seen from free-space. In other words, it will be hardly
noticed by the source: it will be shown in Section VI that this
idea is viable, as long as the dielectric contrast stays high.
This conclusion is intuitively justified by the fact that the fun-
damental quantity in source-half-space interactions is the di-
electric contrast between the two media, which is negligibly
affected by the lossy medium perturbation; this phenomenon
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was already pointed out in [7]. Therefore, it will be assumed
that the total incident electric field fulfills the condi-
tion .

The second order Taylor expansion of (9) with respect to the
complex dielectric permittivity reads

(10)

with

(11)

(12)

The TDP sensitivity depends on and sensitivity
terms; since the latter are trivial, we will focus our analysis
on the former. Moreover, in the subsequent statistical analysis
of the sensitivity, introduces a mere offset, without ac-
counting for the statistical dispersion of the TDP sensitivity.

We will detail here the proposed analysis method for the first-
order term , the second-order being derived fundamentally
in the same way. Knowing that the first-order differential of the
norm of a complex vector is related to the differential of a
complex variable by

(13)

where the apex stands for the Hermitian transpose, we can
write

(14)

Using (5) and (6), together with the hypothesis of a weakly sen-
sitive source, the following quadratic form is obtained:

(15)

having defined matrix as follows:

(16)

(17)

A great part of the results dealing with the sensitivity will be ex-
pressed as functions of the transmitted PWS. The rationale for
this choice is that the PWS of is more regular than the one
in air, so that its envelope is more easily described and repro-
duced. This is important for the subsequent statistical analysis.
Moreover, the mathematical analysis is also simplified thanks to
this formalism, since the properties of the different operators are
more readily applicable. In any case, the results are not affected
by this choice, since the PWS and are biunivocally re-
lated through the transmission operator.

All the derivatives involving the transmission matrices are
reported in Appendix I. It is sensible to define the operator

, hereafter referred to as the sensitivity operator

(18)

Therefore, we can now provide the following fundamental re-
sult:

(19)

This formulation has the advantage of pointing out the fact that
the sensitivity is of course dependent on the PWS of the excita-
tion, but that in fact its behavior is controlled by a kernel, mod-
eled through the matrix , that is common to every source.
In other words, represents the transfer function between the
PWS of the impinging wave and the sensitivity that its com-
ponents will experience while being transmitted into the lossy
medium.

The development applied to the linear term can also be ap-
plied to the quadratic term in (10), the only difference being that
it is now necessary to consider the second-order differential of
the norm of a vector

(20)

hence

(21)

having introduced the following matrices:

(22)

(23)

The model thus derived allows computing the TDP sensi-
tivity for a given source, just requiring as an input the PWS
of the field impinging on the lossy half-space. An interesting
by-product of the proposed analysis is that the frequency de-
pendency of the TDP sensitivity is dominated by the term

, as seen in (19) and (21). The fact that this term
contains a associated to the electrical conductivity term
means that any model approximating it through a polynomial
expansion is bound to need high-order terms. This is actually the
case, as proved by the choice made in [4], where a third-order
frequency polynomial had been necessary. The proposed repre-
sentation, being derived from a physical analysis, thus leads to
a more effective definition of the sensitivity.

B. Statistical Analysis

The previous results can be used for investigating the fol-
lowing problem: how does the TDP sensitivity depend on the
PWS of the source? We will here describe the PWS as a
stationary random process and study how the energy sensitivity
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is statistically distributed as a consequence of the random-
ness of the source PWS.

This problem can be solved easily by means of (18), since all
the quantities involved can be computed directly without any
need of actual simulations or measurements. Nevertheless, (18)
requires to impose a certain PWS distribution; it is possible to
prove that the sensitivity actually depends just on the envelope
of the PWS, since (18) involves quadratic expressions [8] (see
Appendix II). For this reason, the energy-normalized spectrum
envelope will be considered, as defined by

(24)

In the context of a statistical analysis, the sensitivity oper-
ator defined in (18) can be evaluated directly; the focus will be
put on studying the first two statistical moments of the sensi-
tivity for a given PWS energy-density spectrum . Since
all the quantities in (19) and (21) are deterministic but for the
sensitivity operator, the statistical analysis will focus on this last
term.

In particular, the following approximation holds (see
Appendix II) as long as the spatial bandwidth of the
normalized energy-density spectrum of the average
source is smaller than

(25)

where and are the arithmetic means of, respectively, the
eigenvalues of the Hermitian and the skew-Hermitian parts of
matrix , where this last stands for any of the derivative opera-
tors . This result is noteworthy, since it states that the average
of the sensitivity over all the possible sources depends exclu-
sively on the properties of the lossy medium and the average
spectral content of the source.

The dispersion of the TDP sensitivity around its average can
be assessed by studying the eigenvalues of the three derivative
operators . Indeed

(26)

(27)

so that, the distance between the eigenvalue pairs is a direct
measure of the dispersive nature of the sensitivity.

In order to test these ideas, we will hereafter consider a planar
SAR assessment configuration as a practical application, since
it is an interesting example of high-contrast lossy configuration;
the nominal electrical parameters of the lossy medium are thus
imposed by international standards, such as [9], and are reported
in Table I.

Therefore, the associated eigenvalues are shown in Figs. 2
and 3, as computed for the three half-space configurations of
Table I. The spectral variable was normalized with respect to
the free-space wave-number . Matrices and were ex-
panded into their Hermitian and skew-Hermitian components,
as explained in Appendix II, whereas is already Hermitian.

TABLE I
THE ELECTRICAL CHARACTERISTICS OF TISSUE-EQUIVALENT LIQUIDS FOR

SAR ASSESSMENT CONFIGURATIONS, AS SET IN [9]

Fig. 2. Eigenvalues of the Hermitian and skew-Hermitian parts of operator�
associated to the linear sensitivity term, at 0.9 GHz (solid line), 2.5 GHz (dash
line) and 6 GHz (dotted line). The results here shown regard the cut � � �.

Figs. 2 and 3 show that each pair of eigenvalues coincides
around the origin , i.e., for normal paraxial incidence.
The -integrable discontinuities around are due to the
branch singularity in the spectrum of Green’s function [10]; a
similar behavior is present around , fundamentally due to
the same phenomena, but mitigated by losses. Conversely, it can
be noticed that the distance between each pair of eigenvalues
widens with the time and space frequency. This trend gets
much stronger when getting beyond , i.e., when considering
reactive components of the source PWS. More specifically,
the skew-Hermitian components present an increased distance
with respect to the purely Hermitian ones for a given .
Looking at (19), the skew-Hermitian component operates over
the variations in the conductivity : this means that the reactive
components of the source PWS will be affected in a more
variable way in response to variations of the conductivity than
equal-strength modifications of the permittivity. These simple
conclusions already show that the sensitivity will present an
higher degree of variability for near-field sources, richer in re-
active energy, than far-field ones, where no reactive component
is available; this is coherent with the common sense perception
that the TDP sensitivity is not dispersed for a far-field config-
uration.
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Fig. 3. Eigenvalues of the Hermitian and skew-Hermitian parts of operator�
and � (last picture) associated to the quadratic sensitivity term, at 0.9 GHz
(solid line), 2.5 GHz (dash line) and 6 GHz (dotted line). The results here shown
regard the cut � � �.

In order to assess these findings, the sensitivity operators were
studied in severalways:1) (25)was used forassessing theaverage
sensitivity, 2) a deterministic estimate was given assuming
a paraxial propagation, thus considering the approximation

; and finally 3) (18) was directly evaluated
by considering a population of ten thousand random realizations
for the transmitted PWS. For this last case, we considered a
Gaussian energy-density spectrum with a bandwidth

, with a zero-mean Gaussian distribution. This
choice is justified in the context of SAR assessment tests for
telecommunications, where sources are usually not highly
directive. Table II shows the results of this analysis. It turns
out that the paraxial approximation is not very effective
when compared to (25); nevertheless, it allows to introduce
a very simple model for the average sensitivity, as reported
in Section VI. Much worse is the fact that the paraxial
approximation fails to acknowledge the intrinsic variability of
the sensitivity with respect to the source PWS; the sensitivity
is indeed collapsed into a deterministic value, rather than
a statistical distribution.

TABLE II
SENSITIVITY OPERATORS FOR A GAUSSIAN-ENVELOPE PWS, WITH

BANDWIDTH � . ALL THE RESULTS MUST BE MULTIPLIED BY A

FACTOR ��

Statistical distributions for the five operators are shown in
Fig. 4 for the same Gaussian PWS envelope, but for a changing
spectral bandwidth , for a frequency of 6 GHz. It appears
that the case , i.e., with very little reactive com-
ponents, is indeed well described by the paraxial approxima-
tion; but as soon as the reactive content increases, the sensitivity
moves away and spreads. This trend is in accordance with the
results presented in Figs. 2 and 3 and the previous considera-
tions about the distance between the eigenvalues. It is therefore
not possible to neglect the variability of the sensitivity due to
the source characteristics. The spread is quantified in Table II
for , showing that considering a 95% margin of con-
fidence implies an uncertainty of for the sensitivity, ap-
proximating the distributions as Gaussian ones.

IV. INCLUDING THE PRESENCE OF BUFFER LAYERS

In many practical cases the lossy dielectric may not face di-
rectly the air half-space, but buffer layers of complex dielectric
permittivity and thickness are interposed between the two
half-spaces, for where is the number of buffer
layers. Although the previous model was developed under a half-
space assumption, it can be promptly extended to a stratified con-
figuration; in the following discussion, we will assume that all the
media have negligible losses with respect to the inner medium.
Therefore, for the sake of computing the TDP, the only important
quantity is the PWS of the field transmitted into the lossy di-
electric. This can be computed directly in the case of a stratified
structure, by cascading the relationships reported in Appendix I.
In order to simplify the notations, hereafter all of the quantities
related to the electric field will refer to the tangential component.

In this Section we first investigate how the presence of a buffer
layer affects the TDP, in particular by extending the analysis of
the role of the reactive energy of the source. Then, we focus on
the modification of the TDP sensitivity.

A. Impact on the TDP

The PWS of the field transmitted into the lossy medium
can be regarded as having been generated in a configuration in-
volving just two media, i.e., the right half-space made of the
lossy dielectric and the left one in air, as in the original descrip-
tion. To this end, an equivalent source needs to be introduced,
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Fig. 4. Statistical distributions of the sensitivity operators for the Hermitian and
skew-Hermitian components of the three derivative matrices� , as computed
for a Gaussian-distributed PWS with a Gaussian-envelope energy-density func-
tion with�� dB spatial bandwidth � �� equal to 0.5, 1 and 2. The working
frequency is 6 GHz and the lossy medium is specified in Table I.

much in the same way as for a Thevenin equivalent circuit. For
the case of a single additional layer as depicted in Fig. 5, we can

Fig. 5. A stratified configuration with a lossless buffer layer of thickness �.

write

(28)

with

(29)

Matrices and are the reflection matrices at the two di-
electric interfaces, as given in Appendix I, whereas and
are the longitudinal propagation constants for, respectively, the
free-space and the shell media.

The PWS transmitted in the non-stratified configuration was
given by (6)

(30)

By comparing (28) and (30), it is possible to define an equivalent
PWS impinging from the air side (with no shell) as

(31)

having introduced the correction matrix

(32)

Under a weakly-sensitive source assumption, the impact of the
shell on the TDP can be assessed by computing the ratio of the
signal energy for the shell configuration and the original one

, that are related to the definition of the TDP given in (9),
while expressing all the spectral quantities as functions of the
transmitted PWS

(33)

where is the PWS transmitted with no shell present. The
previous expression can be bound as

(34)

This formulation can be usefully employed in assessing the
overall effect of a buffer layer on the TDP. Indeed, the matrix

accounts for the modification of the transmissivity of
the PWS from the air side to the lossy medium in the presence
of a buffer layer; again, its effect is weighted by the energy-nor-
malized spectrum .
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Fig. 6. The norm of matrix ��� for a 2 mm thick buffer with � � �. The inner
lossy dielectric are tissue-equivalent liquids as described in Table I.

The norm of is related to

(35)

the first two norms are bound to have a finite value, due to
their physical meaning: they account for the transmissivity. On
the other hand, may be unbounded, since it represents
standing-wave phenomena. This can lead to a strong increase in
the TDP as soon as a resonance can be physically instated inside
the shell region.

An example of the behavior of is given in Fig. 6,
for the case of SAR tissue-equivalent liquids with a shell 2 mm
thick, with a relative permittivity . These results clearly
prove that the TDP is indeed modified by the presence of the
buffer, especially (as expected) at those frequencies where its
thickness is comparable with the wavelength. These conclusions
support and complete the findings reported in [12], [13].

Fig. 6 shows that the shell affects the TDP in two ways: 1)
in the visible region (with respect to air), the shell operates
as an impedance transformer, providing a better matching be-
tween the wave-impedances in air and in the lossy dielectric; 2)
in the reactive region, it allows the transmission of more reac-
tive energy if , since it behaves as
a lens focusing PWS components towards the direction normal
to the dielectric interfaces. It is this last phenomenon that gives
the strongest contribution to the TDP modification. As a conse-
quence, modification of the reactive part may have a non neg-
ligible effect on the topography of the electric field inside the
lossy medium.

As in the case treated in Section III-B, the impact of a shell on
the TDP depends on the reactive content of the impinging PWS.
This same approach yields the results shown in Fig. 7: although
the average modification of the TDP is not strongly affected,
the more reactive the source, the more statistically dispersed is
the TDP. It is fundamental to bear in mind that the scenario
here considered presents a perfect knowledge of the electrical
characteristics of the lossy medium.

The effectiveness of the bound given in (34) is proven in
Table III, where for the 6 GHz configuration, with ,
the maximum modification of 1.41 well represents the disper-
siveness shown in Fig. 7.

Fig. 7. Statistical distributions of the modification factor � �� for the TDP,
due to the presence of a dielectric shell for a 6 GHz SAR configuration.

TABLE III
MODIFICATION OF THE TDP AND ITS LINEAR SENSITIVITIES IN PRESENCE

OF A DIELECTRIC SHELL, WITH � � � �� AND � � �, FOR A

GAUSSIAN-ENVELOPE PWS WITH � � � . THE BOUND FOR THE TDP
MODIFICATION IS GIVEN BY (34), WHEREAS THE VALUES IN PARENTHESES

CORRESPOND TO THE BOUND (40)

B. Impact on the TDP Sensitivity

The equivalent-source approach can now be applied to derive
the sensitivity of the TDP in the stratified configuration, yielding

(36)

As shown in Section VI, the sensitivity of the reflection ma-
trices is one order of magnitude smaller than that of the trans-
mission ones. Hence, we can claim that

(37)

Comparing this result to the sensitivity obtained in the first place
with no buffer yields

(38)
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Fig. 8. The norm of matrix ��� for a 2 mm thick buffer with � � �.

where

(39)

Plugging (31) and (38) into (14) provides a tool for computing
the new linear sensitivities as in the case with no shell. The fun-
damental quantity that dominates the modification of the sensi-
tivities is the product of the norms of the two matrices and .
An example of the spectral behaviour of is shown in Fig. 8:
as opposed to the modification of the TDP, the norm of the first
derivative of the transmitted PWS is generally not strongly af-
fected when compared to the case with no shell, especially for
sources with a poor reactive content. Again, the statistical dis-
tributions related to the source PWS have been computed and
are shown in Fig. 9. These results give a better insight into the
modification of the linear sensitivities; indeed, the sensitivity to
the conductivity (imaginary part of ) is more strongly affected
than the one to the permittivity. In particular, its average value
decreases for a more reactive source and it spreads over a quite
larger support.

The derivation of a closed-form upper-bound is not feasible
for the modification of the linear sensitivities. Nevertheless, the
following bound provides some information:

(40)

where the indices stands for “shell” and “no shell”.
The statistical results for the modification of the TDP and its

sensitivities are summarized in Table III for , together
with the value of the correction factors evaluated for a paraxial
propagation and the upper bounds given in (34) and (40). As for
the results shown in Table II, though the paraxial model provides
a fairly good estimate for the average modifications, it is unable
to account for the dispersion they induce. Moreover, it cannot
explain neither the stronger impact for more reactive sources,
nor the shift in the linear sensitivity related to the conductivity
(see Fig. 9).

For the sake of brevity, we will not derive here the second-
order sensitivity in the case of a shell. Nevertheless, the same
approach can be extended to include such analysis. We can con-
clude that, in the case of SAR applications, the presence of a

Fig. 9. Statistical distributions of the modification of the linear sensitivity op-
erator due to the presence of a dielectric shell for a 6 GHz SAR configuration.
The real part is related to the sensitivity to the dielectric permittivity � , while
the imaginary part deals with the sensitivity to the conductivity �.

shell has not a fundamental impact on how the TDP reacts to
modifications in the permittivity , whereas the sensitivity to
the conductivity is more strongly spread and lowered. More-
over, the shell can indeed strongly increase the transfer of energy
between the two half-spaces, as well as lead to a further uncer-
tainty in the evaluation of the TDP for a given near-field source.

V. NEGLECTING THE NORMAL COMPONENT

There have been several discussions about whether the
normal component be negligible or not [3]. In other words,
is it possible to approximate with ? This same
assumption is used throughout this paper. An answer to this
question can be given by recalling that [11]

(41)

where is the maximum eigenvalue of the matrix .
This allows writing

(42)

A useful rule of thumb for deciding whether the normal com-
ponent can be neglected involves again the hypothesis

: in this case, the normal component can be neglected. As
an example validating this statement, the upper bound is
shown in Fig. 10 for several frequencies, as computed for stan-
dard tissue-equivalent liquids.
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Fig. 10. The maximum eigenvalue of the matrix � �, as computed for the
three SAR configurations in Table I.

Back in the spatial domain, the impact of on the TDP can
also be assessed; indeed

(43)

having defined as the TDP obtained by neglecting .
The band-limitedness of the PWS means that the upper-bound
for the error on the TDP for SAR configurations must be lower
than 4% for a Gaussian-envelope PWS with and
1% for , whereas it can be as high as 20% for

.

VI. PARAXIAL APPROXIMATION

In the previous analysis, no assumption was made on the dis-
tance between the source and the dielectric interface, so that the
reactive components (in air) of the PWS were considered as con-
tributing to the TDP. Nevertheless, the propagator in
air imposes a very strong attenuation to the reactive parts, as ex-
pressed by the attenuation-per-wavelength

(44)

As an example, the PWS components over the spectral radius
experience an attenuation of 25 dB after a propa-

gation distance of one wavelength. In many practical situations
such a distance is not enough to justify a far-field analysis; nev-
ertheless, although the field topography has not yet assumed its
far-field configuration, a distance of is enough to enforce a
PWS with almost the same envelope that would be ob-
tained in a truly far-field analysis. Thus, from the TDP point
of view, these two configurations coincide. Recalling that the
eigenvalues of all the sensitivity operators vary very slowly over
the air active region (see Figs. 2 and 3), they can be fairly ap-
proximated by considering their values in the origin. This means
that even in a configuration that does not satisfy the far-field cri-
teria, a paraxial analysis can be applied.

Under a paraxial approach, the transmission operator is
just a scalar function, given by

(45)

to be compared with the exact expression (55). It is thus neces-
sary to define the sensitivities of the transmission terms

(46)

(47)

and, finally, the sensitivities of the signal energy as required
by (10)

(48)

(49)

These results can be applied in practice as long as the reactive
content of a source is negligible, thus providing a simple way of
predicting the sensitivity of the TDP together with (10).

It is also interesting to consider the reflection coefficient
at the air-dielectric interface as seen from air and its relative
sensitivity

(50)

(51)

This last result can be used to explain the low sensitivity of
the incident field to drifts in the lossy medium. To this end, let us
consider the power radiated by a lossless
antenna; is here the steady-state reflection coefficient as seen
from the antenna feed-line, and it is thus affected by the reflec-
tions over the dielectric interface. Considering the free-space
reflection coefficient at the antenna input port, can be
written as

(52)

where is related to the transmitting properties of the antenna
[14]; the finite directivity of the antenna implies that .
These considerations lead to the following result:

(53)

and finally to

(54)

Therefore, the relative sensitivity of the power radiated by the
antenna is approximately bounded by , which is at
least one order of magnitude smaller than the signal-energy sen-
sitivity. This result proves that, unless in a very near-field con-
figuration, the power radiated by the antenna is less strongly
affected by changes in the lossy half-space characteristics than
the TDP, as reported in [7].

VII. CONCLUSION

We have introduced a spectral approach for the analysis of the
sensitivity of the TDP to drifts of the electrical properties of a
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lossy half-space. The definition of a sensitivity operator and of
the derivative matrices has shown that their eigenvalues distribu-
tion leads to a clear understanding of complex phenomena, such
as the dispersiveness of the TDP sensitivity and in particular the
fact that the sensitivity to the conductivity is more critical. The
same approach was extended to the case of a stratified structure,
in order to investigate how a lossless shell modifies the TDP and
its sensitivity.

In all these scenarios, the fundamental role played by the re-
active content of the source PWS was highlighted, pointing out
how it gives rise to a statistically dispersive behaviour of the
TDP and its sensitivity to drifts in the electrical parameters of the
lossy medium. Hence, the very idea of characterizing the sen-
sitivity in a deterministic way, independently from the source,
is not physically sound, especially for near-field sources. These
results should thus lead to a better understanding of the phe-
nomena involved in near-field configurations, such as in SAR
applications.

APPENDIX I
DEFINITION OF THE SPECTRAL TRANSMISSION OPERATOR AND

RELATED DERIVATIVES

The transmission and the reflection operators, respectively
and , for a dielectric interface between two media are defined
as [5]

(55)

(56)

(57)

(58)

being , .
By applying the derivative chain-rule, the first derivative

is given by

(59)

where

(60)

(61)

(62)

(63)

In the same way, the second derivative is given by

(64)

where

(65)

(66)

(67)

Concerning the derivatives of the operator, we get

(68)

and

(69)

APPENDIX II
PROOF OF (25)

The sensitivity operator defined in (18) operates over a ma-
trix . We consider at first the fact that any matrix
can be decomposed into the sum of an Hermitian part and a
skew-Hermitian one . Hence, the matrix is orthonormal,
i.e., with eigenvalues , as well as ; this last claim
implies that the eigenvalues of are purely imaginary.
Furthermore, thanks to their symmetry properties the diagonal-
ization matrices are orthonormal too, so that one can write

(70)

(71)

where are diagonal matrices containing the eigenvalues
of, respectively, the Hermitian and the skew-Hermitian compo-
nent of . Imposing , we are able to write the integrand
of the numerator of (18) as

(72)

having introduced the representation of the vector into the new
basis given by the diagonalization matrices and as

(73)

(74)

where the terms and are the eigenvalues of, respec-
tively, matrices and .

As shown in Section V, matrix for any source with
. Recalling that , we can

state that

(75)
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leading to

(76)

In order to compute the statistical average of , the fol-
lowing functions need to be studied

(77)

where stands for or . This function represents the energy
distribution of the PWS normalized to its total energy; it can
thus be regarded as a function describing an envelope. Only one
component of the PWS, as represented over the diagonalized
basis, is considered, according to the value of the index . It is
reasonable to assume that the two components of this function
are identically distributed; therefore, their averages are identical
too. Hence, the energy-density spectrum can be
defined, yielding

(78)

where and are the arithmetic means of, respectively, the
eigenvalues of matrices and . The fact that the same en-
velope has been used for the Hermitian and the skew-Hermitian
parts is due to the unitary property of the diagonalization ma-
trices. The energy content of the PWS is therefore not modified
passing from one basis to the other. No assumption has been
made in order to come to this result; it is therefore independent
of the probability distribution of the energy-density spectrum.
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